Since April 2019. PhD Student & research associate at the group Profesorship of Biodiversity of Plants of the FSU Jena.
08/2018 – 03/2019. Scientific Assistant at the Computer Vision Group of the FSU Jena.
05/2018. Master Thesis with title: "Identification in Wildlife Monitoring".
04/2016 – 05/2018. Master Student in Computer Science at the Friedrich Schiller University Jena.
02/2016. Bachelor Thesis with title "Simulation eines kapazitiven Sensors zur Geometriebestimmung und -bewertung eines Katheters".
09/2012 – 02/2016. Bachelor Student in Computer Science at Hochschule Harz in Wernigerode.
07/2012. Abitur at the Domgymnasium Merseburg.
Publications
Bodesheim, P., Blunk, J., Körschens, M., Brust, C. A., Käding, C., & Denzler, J. (2022). Pre-trained models are not enough: active and lifelong learning is important for long-term visual monitoring of mammals in biodiversity research—Individual identification and attribute prediction with image features from deep neural networks and decoupled decision models applied to elephants and great apes. Mammalian Biology 102, 853–875.
Körschens, M., Bodesheim, P., & Denzler, J. (2022). Beyond Global Average Pooling: Alternative Feature Aggregations for Weakly Supervised Localization. Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, 180-191. DOI: 10.5220/0010871700003124.
Körschens, M., Bodesheim, P., & Denzler, J. (2022). Occlusion-Robustness of Convolutional Neural Networks via Inverted Cutout. In 2022 26th International Conference on Pattern Recognition (ICPR) (pp. 2829-2835). IEEE.
Gruner, B., Körschens, M., Barz, B., & Denzler, J. (2021). Domain Adaptation and Active Learning for Fine-Grained Recognition in the Field of Biodiversity. arXiv preprint arXiv:2110.11778.
Körschens, M., Bodesheim, P., Römermann, C., Bucher, S.F., Migliavacca, M., Ulrich, J., Denzler, J. (2021) Weakly Supervised Segmentation Pretraining for Plant Cover Prediction. In: Bauckhage C., Gall J., Schwing A. (eds) Pattern Recognition. DAGM GCPR 2021. Lecture Notes in Computer Science, vol 13024. Springer, Cham. https://doi.org/10.1007/978-3-030-92659-5_38External link
Körschens, M., Bodesheim, P., Römermann, C., Bucher, S.F., Migliavacca, M., Ulrich, J., Denzler, J. (2021) Automatic Plant Cover Estimation with Convolutional Neural Networks, CS4BioDiversity Workshop der INFORMATIK2021
Körschens, M., Bodesheim, P., Römermann, C., Bucher, S.F., Ulrich, J., Denzler, J. (2020) Towards Confirmable Automated Plant Cover Determination. In: Bartoli A., Fusiello A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science, vol 12540. Springer, Cham. https://doi.org/10.1007/978-3-030-65414-6_22External link
Körschens, M., Denzler, J. (2019) ELPephants: A Fine-Grained Dataset for Elephant Re-Identification. The IEEE International Conference on Computer Vision (ICCV) Workshop
Körschens, M., Barz, B., Denzler J. (2018) Towards Automatic Identification of Elephants in the Wild, AI for Wildlife Conservation Workshop (AIWC).
Conference contributions
Körschens, M., Römermann, C., Bucher, S. F., Ulrich, J., Denzler, J. (2019) Deep Learning Approaches for Automatic Analysis of Plant Species and Cover Determination. iDiv-Konferenz Leipzig & GfÖ Jahrestagung Münster, Poster.
Körschens M., Barz B., Denzler, J. (2018) Towards Automatic Identification of Elephants in the Wild. ICEI 2018, Jena, Poster.